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G R A V I T Y - I N D U C E D  S P R E A D I N G  OF A D R O P  OF A V I S C O U S  F L U I D  

O V E R  A S U R F A C E  

O. V. Voinov UDC 532.5 

The unsteady-state nonlinear problem of spreading of a drop of a viscous fluid on the horizontal 
surface of a solid under the action of gravity and capillary forces is considered for small Reynolds 
numbers. The method of asymptotic matching is applied to solve the azisymmetrical problem 
of spreading when the gravity exerts a significant effect on the dynamics of the drop. The flow 
structure in the drop is determined at large times in the neighborhood of a self-similar solution. 
The ranges of applicability of the quasiequilibrium model of drop spreading with a dynamic edge 
angle and a self-similar solution are found. It is shown that the transition from one flow model 
to another occurs at very large Bond numbers. 

The theory of drop spreading is based on the model of a nonequilibrium (dynamic) edge angle [1, 2] 
and takes into account the possible precursive film [2-4] moving ahead of the visible edge of the drop. The 
gravity effect on a viscous flow in the drop was considered by the author [5] in a quadratic approximation 
relative to the Bond number (B), which holds for B < 20. In the present paper, in contrast to [5], the viscous 
flow is determined for any Bond numbers. The theoretical models of the dynamics of wetting [1, 2] that we 
use are supported by the data of many experiments [6-8] in the absence of gravity. 

1. Basic Equa t ions .  We consider the spreading of a drop of a viscous fluid on the smooth horizontal 
surface of a solid. For quite large times from the beginning of the spreading, the Reynolds numbers and the 
capillary number (Ca) are small. Here, the angle of slope of the gas-fluid interface is small (a << 1). In the 
region of sufficiently large thicknesses of the layer h (the drop thickness at the center is assumed to be a 
macroscopic quantity), the hydrodynamic description is valid. 

For the case of a horizontal surface, with allowance for capillary forces and gravity, the creeping motion 
of a thin layer at a sufficient distance from the contact line L0 (for relatively large thicknesses h of the layer) 
is described by the equation in coordinates on this surface: 

O__hh = 1 div{h3 grad (aAh - pgh)}. (1.1) 
Ot 31t 

Here p is the density, g is the acceleration of gravity, # and a are the coefficients of dynamic viscosity and 
surface tension. In close proximity to the contact line of three phases, the asymptotic behavior of the angle 
of slope of the interface 1 

a3 = 9 C a ( s -  (1 /3) lns  § ( l n s - 4 ) / ( 9 s )  + . . . ) ,  ~ = IVhl, Ca = ~v/~, 

s = ln(h/h~)  + C, Isl >> 1, ICal << 1, (1.2) 

where v is the velocity of the contact line, is observed [1, 2]. The parameter h~ corresponds to the minimum 
characteristic thickness at which the asymptotic behavior occurs. The method of determining the constaalt 
asymptotic behavior (C - In hem) was indicated in [1, 2, 5]. In connection with the unbounded spreading of 
a drop considered below, the case of a zero static edge angle of wetting is of most interest. For the case of 
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complete wetting,  the constant C = 0, and, if there is a precursive wetting film moving under the van der 
Waals forces, the min imum scale in (1.2) is equal to the maximum thickness of this film [2]: 

h~ = 1.O85(3Ca)-U3( A' /(2~ra) ) 1/2. (1.3) 

A coefficient equal to 1.085 was found from numerical calculation of the corresponding boundary-value problem 
[2]. If the capillary numbers or the angles a are insufficiently small (generally speaking, their smallness is not 
sufficient compared with unity), the value of h~m formally calculated using (1.3) does not exceed the molecular 
sizes and there is no precursive film [2, 4]. Here h~ has the order of the molecular size [1]. 

For the problem of the dynamics of a film considered at a large distance from the contact line of three 
phases (the external problem), it is convenient to write the condition at the contact line L0 [for the points of 
which the external  solution is h(zo) = 0] in asymptotic form [5]: 

--- - + . . . ,  x --~ x 0 ,  

(1.4) 
>> 1. 

The parameter  h0 is the characteristic thickness of the layer for the external problem. One can determine 
this parameter as follows. We note that the quanti ty so should not differ greatly from the characteristic 
(maximum) value of s in the transient region between the internal and external regions, which limits from 
above the range of s values to which (1.2) and (1.4) are applicable. This condition is used to refine the limit 
of applicability of the asymptotic solution of the external problem upon spreading of the drop. 

2. D y n a m i c s  of  a H e a v y  D r o p  for  L a r g e  B o n d  N u m b e r s .  In the axisymmetrical case, Eq. (1.1) 
is written together  with the regularity conditions on the axis of symmetry and the condition of decrease in 
the solution on the contact line: 

10( 3 0( o0 
o t  - ,- o,- Pgh-7    ' 

Oh 0 h 
Or O, ~ r r A h = 0  for r = 0 ,  h0 *0 for r -* ro .  

Here r is the distance from the axis of symmetry and r0 is the desired coordinate of the external contact line 
(the visible edge of the drop). Together with the initial conditions, relations (1.4) and (2.1) determine the 
drop dynamics. Next, we search for the asymptotic behavior of the solution for sufficiently large times from 
the moment of beginning of drop spreading when only the drop volume V is significant. 

The approximate solution of the flow problem of a drop is known for the case where the effect of 
viscous forces on the shape of the drop is relatively small in its central region; in a principal approximation, it 
is determined relative to a small Ca by the balance of the gravity and capillary forces from a static equation. 
The drop which is quasistatic in its central region forms a dynamic edge angle with a rigid surface. Figure 1 
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shows the static form of the drop for B = 100 (solid curve) and a parabolic profile for B = 0 (dashed curve). In 
[5], within the framework of the asymptotic model, an external solution that is close to the quasistatic solution 
was found with allowance for terms of the form CaB and CaB s in the expression for the layer thickness h. 
In contrast to [5], we search for a solution with allowance for terms of the order of Ca for arbitrary Bond 
numbers B [9] to expand the range of applicability of the solution. 

The solution of the external problem for (2.1) is sought in the form 

h h(0)(r , t )+ h(D(r, t  ) + . . .  h(x ) Ca f l ( r , t ) ,  ]h(1)l << h(0), Ca gv dro = , = = - - ,  v = . (2.2) dt 
We note that h(0 ) and f l  depend on the time only parametrically and do not depend on the velocity (on the 
number Ca), and ho) takes into account, in a linear approximation, the effect of viscous flow on the shape of 
the drop. Substitution of (2.2) into (2.1) and neglect of small Ca 2 allow one to find 

02 Oh(o) B Oh(o) r 2 
--" (2.3) 4 = ~  

02 0h(1) B Oho) 1 3 I~r~ ] O'h(o) 
0~ 2~ 0~ 4 0~ =-F(~'t)= ~ 16ah~0 ) j ~ d ~ "  (2.4) 

0 

Here O'/Ot is the derivative of the function with respect to r and t, and B = pgr2/a. 
At the drop edge, the thickness is zero: 

h(o) = 0, h(1) = 0, = 1. (2.5) 

The regularity condition of the solution at the center requires the boundedness of Oh(o)/O ~ and Oho)/O ~ for 

We assume that the drop volume V is determined by the unperturbed solution h(0): 

1 1 

J V = 7rr h(0 ) d~ = ~ h0) 
0 0 

The solution of Eq. (2.3) with condition (2.5) is expressed in terms of the modified zero-order Bessel functions 
of the first kind Io(z) [5]: 

1 
a0~ 

h(0) = - ~ - - [ I o ( V ~ ) -  Io( ~9/~)1, fl-1 = I o ( v ~ ) -  ] I 0 ( v / ' ~ )  d~, B = pgr2/a. (2.7) 
0 

Using (2.6) and (2.7) and the definition of B, we find the right-hand part of (2.4): 

3 a~ ] ( 2  ) Oh] = _~ V~I;(v/-~)ao (2.8) 
= ~ - h(o ) d(, ao = - ~ r r  r=ro to" F Ca  aoh 0 ) o 

Here c~o is the edge angle of the drop which is not perturbed by a viscous flow [h = h(0)] and I~ is the 
derivative with respect to the Bessel function. 

Integrating (2.4), we find a solution which is regular for ~ = 0: 

( (2 
0~ --" Y(0) D A- ~2y~o)(~2 ) d~2 ~ly(o)(~l)F(~l)d~l , Y(0) = 0~ ' D = const. (2.9) 

0 0 

The time t enters into F(~) and the right-hand part of (2.9) as a parameter on which Ca, a0, so, h(0), and 
Y(o) depend. For brevity, the dependence on t in explicit form is omitted. 
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For h(1 ), condition (2.6) is easily reduced to the form 

/ ~ - ' ~ 1  0h(1 ) d~ = 0. (2.10) 

0 

Excluding D from (2.9) by means of (2.10) and after substitution of (2.8) and certain transformations, 
including integration by parts, we obtain 

Oh(i) Oh(~ Ca 3a~ f C 
0 {2y~0)(C) de; (2.11) 

W2( ( )=  - Y  d ( - _  Y d~, Y (2.12) 
a0 0 0 

We consider the solution near the edge of the drop. Letting ~ ~ 1 (r --* r0) and taking into account that 
h = (1 - ~)s0r0/2 + . . . ,  we transform (2.11) to the form 

dh 2 V/~=s0  1 - - -  in - C 1  + . . .  
s -  d~ ~0 s ~  ' 

1 C'=-lnk+J[k2W1W:+T~JW~(~)-" - - "  0 ~ d~, k =  r~176 = 2a0 1 V ~  I~ (x/~)F~(B)' 4 (2.13) 

2 ~ [ 1~(v"~) .1 ~ 

0 

In going from (2.11) to (2.13), we separate a part of the integral (2.11) which is divergent as ~ -~ 1. 
In accordance with (2.7) and (2.8), the angle s0 in (2.13) is a known function of the Bond number s0(B). 
Together with (2.7), formulas (2.12) and (2.13) complete the solution of the external problem. Using the 
asymptotic condition (1.4), we find 

so  = S(o)(ho), ho = ao exp (--C1), (2.14) 

where s(0)(h0 ) is the asymptotic behavior of (1.2) written with accuracy So 2. As a result, for a completely 
wetted surface, it follows that s~(S) = 9Ca(s0-  (1/3)In so) and so = ln(h0/h~).  The corresponding equation 
of variation in the radius r0 of the drop foundation is written in the form 

2 V pgr2o ~_ dr0 _ s~(S) a0 = S = �9 
a dt - 91n(ho/h~m)- 31n In (ho /h~) '  r,r~' (7 ' 

the function s0(B) is defined by (2.8), h0 is known from (2.14), and C1 = CI(B). Expressing r0 in terms of s0, 
one can write an equation for s0. Integration of this equation faces no difficulties and gives to(t) and s0(t). 

When the gravity is insignificant (B = 0) and the drop in the central region is close to a spherical 
segment, formula (2.13) gives C1 = 2. In [5], corrections of the order of B 2 in (2.13) are found. Formula (4.12) 
in [5], which is similar to (2.13), has the form 

a 3 = s3(B) + 9Ca[2 

As a result, for the constant (2.13), it follows 

5 B  
C1 = 2 - - - -  

4 24 

-4- In(1 - ~) - - - -  

that 

7 B 2 
- 

5 B 7_(B 2 ] 
4 24 + 6  24J + . . . .  

In k + . . . .  (2 .15)  

The calculation results for CI(B) are shown in Fig. 2 [the solid curve corresponds to (2.13), and the 
dashed curve to (2.15)]. In the range of moderate values of the Bond number (B < 20), Eqs. (2.13) and (2.15) 
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agree well. For large values (B >> 20), calculation with the use of (2.13) gives negative values of C1 < 0. 
The increase in h0 relative to (2.14) because of the monotone decrease in C1 reflects a greater role of the 
viscous-energy dissipation in the external flow region relative to the basic dissipation near the contact line of 
three phases. 

Let us estimate the Bond numbers at which the solution obtained and the quasiequilibrium model 
hold. Taking into account (2.14) and the remark to (1.3), the condition of applicability of the theory can be 
written in the form [C1[ << so + C1 = In (ao/hm). Generally, we have In (ao/hm) ": 10 in experiments with 
macroscopic drops [1, 6-8]. If the limit of applicability [CI[ "" 0.3 In (ao/hm) is taken for estimation, the model 
can be used up to C1 "~ - 3 ,  to which corresponds a critical number B. of the order of 300. The characteristic 
critical number depends relatively weakly on the drop size and cannot exceed 500. The range of applicability 
of the model considered with respect to the number B is appreciably smaller for droplets with a height at the 
center of the order of 10 -3 cm. 

The possibility to apply the quasiequilibrium flow model of a drop up to Bond numbers of approximately 
several hundreds does not contradict the estimate [5] of the loss of its applicability in the region B > 24 and 
also increases its importance for the description of the process of spreading of a heavy drop. To convince 
oneself that the estimates are correct, it is advisable to consider the limiting case B ~ cr (t ~ c~), where 
the capillary forces give a minor contribution to drop spreading compared with the gravity. 

3. G r a v i t y  F o r c e - I n d u c e d  S p r e a d i n g  of  a D r o p  Close to Se l f -S imi la r  Spread ing .  For a 
sufficiently large radius of the drop r0, the effect of capillary forces on the flow in its central region should 
be negligible. It is of interest to find the influence of capillary forces on the flow structure as B --* c~ and to 
determine a bound for the number B above which the corresponding limiting solution can be valid. 

In the absence of capillary forces (or = 0), Eq. (2.1) has a self-similar solution of the form [10] 

h = d/--- / , t,  = K t. (3.1) 

The solution h(r, t) is localized in the finite region r < r0: 

h = ( f o l t l l 4 ) (1 - r2 l r~ )  m ,  r0 = (4/vr3) e31%'ls:o ~, , (3r/4)hCO, h ) r ~ = V ,  4rrf4o = V. (3.2) 

We shall seek the solution of Eq. (2.1) as t --+ oo, which is close to the exact solution (3.1), (3.2) in 
the region with the excluded small neighborhood of the drop edge (r = r0). In the small neighborhood of the 
edge, the solution is quasistationary and depends on the variable r - to(t). The solution (3.2) can be written 
in the form 

(9tzv~ l/3 (r2 - r2~ 1/3 dro 
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As a result, the quasistationary dependence 

(9#v~ 1/3 dro 
r --~ r0, h = (r0 - r )  1/3, v = (3.3) 

\ pg / dt 
follows for the small neighborhood of the drop edge. 

We consider (3.3) as a condition at the boundary of the small neighborhood r = r0, inside which the 
dynamics of the film is described by the complete equation (2.1) (a ~ 0). In this neighborhood, the solution 
of the form h(r - r0, t) satisfies the quasistationary equation 

0r  - ; 0 r  r N 0 g h -  - t E r N  . (3.4) 

Leaving in (3.4) the principal terms, which correspond to a plane-problem approximation justified for 
r ,,~ r0, for r0 - r << r, we obtain 

03h pg Oh 3Ca 
Or 3 - a Or h 2" '(3.5) 

Let us introduce the scales along the h and r axes, 

g = L(3Ca) 1/3, n = (a/(pg)) 1/2, (3.6) 

and rewrite (3.5) in dimensionless form 

O~ 303y Oy y--2 ( h_.H, r ro ) 
= Y = ~ = L " ( 3 . 7 )  

According to (3.3), the  solutions of Eq. (3.7) should satisfy the condition 

y = 31/3(-r I/3 + . . .  as r --* - c o ,  (3.8) 

which is justified for large B. 
For relatively small values of y, the term -Oy/O~ in (3.7) is not significant, and the asymptotic solution 

(1.2), from which it follows in the principal approximation that  

~-(~ = Yrn = y << 1, ln(y/ym) >3> 1, (3.9) ~ ~ 3 ~ 1~3 ~ 1 n (U/Ur.)) 1/3, fire~H, 

is the approximate solution. 
We denote the characteristic value of y at which the transition from solution (3.8) to solution (3.9) 

occurs by y+. Taking into account that ln(y+/ym) >> 1 (this corresponds to the condition of validity of (3.9)], 
the passage from (3.9) to (3.8) can be approximately described, ignoring the right-hand side of (3.7), by means 
of the equilibrium equations with the boundary conditions 

- I I I  --I  y - y  =0; 9=o,  (3.10) 
where ~+ is the desired quantity. The solution (3.10) 

9 = y+(1 - exp (~ - if+)) (ff < if+) (3.11) 

describes a semi-infinite film of constant thickness y+ far from ff = ~+. Formula (3.11) is correct under the 
restriction y~_ exp (ff - ~+) :>> (1 - exp(~ - ~+))-2, under which 19'1 ~" y-2 and (3.10) holds. If y+ >> 1, for 
~"- if+ ,,~ 0, the restriction y2 >> 1/y+ is sufficient for (3.11) to be the approximate solution of (3.7). Assuming 
that y+ >> 1, we calculate Y' = -Y+ for ~ --+ r from (3.11). Equating this quant i ty  to the approximately 
constant value of (3.9) (matching the angles of slope), we obtain 

y+ = 3x/a(ln(y+/ym)) 1/3 >> 1 (Ym = h~/H) .  (3.12) 

This equation is easily solved by iteration, because In (1lyre) >> 1. 
To match (3.11) and (3.8), we consider (3.11) as a solution in the boundary layer for Eq. (3.7). Indeed, 

if y ~ ~ in (3.8), the scale if, on which y varies in (3.8), also increases infinitely (dy/d~ ---, 0 and y --+ 00). 
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Therefore, for y = y+ >> 1, one can consider (3.8) as an external solution [of a greater scale compared with 
the scale of (3.11)1, and (3.11) to be a boundary-layer solution. From (3.8) and (3.12), we find 

[(+l = (1/3)y~. = In (y+/ym). (3.13) 

According to (3.6)-(3.8) and (3.13), the self-similar solutions (3.1) and (3.2) are not applicable to the 
following small neighborhood of the line of wetting: 

T 0  - r < i , ,  Z ,  = L l (+ l  = In (y+lym); (3.14) 

note that, for r = T0 -- L., the self-similar profile of the thickness (3.2) drops abruptly to zero for the critical 
thickness (Fig. 3): 

h+ = (a/(pg))1/2(9Ca)1/3 In (h+/h~) '/3 = ao(a/(pg)) 1/2. (3.15) 

In Fig. 3, the drop profile is approximated by the solid curve for h > h+, which corresponds to (3.2), and by 
the dashed curve for h < h+. The value of r0 corresponds approximately to the second formula in (3.2). 

The quantity a0 is the dynamic edge angle of the quasiequilibrium segment of the film (3.11) on which 
the profile (3.2) cuts off. This segment of the film profile is located between two regions in which the effect 
of film dynamics is important. The resulting formula describes the effect of the truncation of the self-similar 
profile at the drop edge under the action of capillary forces. The distance of the truncation L, depends weakly 
on the time. The truncation thickness referred to the thickness at the center decreases as the drop radius in 
the power -1/3 .  

The effect of the capillary truncation of the self-similar profile (3.2) allows one to estimate conditions 
under which this solution is reached as t ---* cx~. Obviously, the solution holds only when the length L. of the 
truncated segment of the profile on (3.14) is small in comparison with the droplet radius: 

r0 >> L. if B 1/2 >> ln(h+/h~) .  (3.16) 

We note that, for large enough drops, for which the influence of gravity and the conditions of terrestrial 
experiments are important, the quantity ln(h+/h~m) is of the order 8-10. 

With allowance for the large value of ln(h+/h~), it follows from (3.16) that the capillary forces affect 
strongly the flow structure in a drop spreading primarily under the action of the gravity. Owing to the effect 
of the capillary truncation of the gravitationally viscous profile of the drop in the neighborhood of the line of 
wetting (h = 0), solution (3.2) is valid only for very large values of the Bond number, B >> 100 (for B > 1000 
in reality). It is in agreement with the results of Sec. 2 and is important for understanding the conclusion 
on the applicability of the quasiequilibrium (or updated) model of drop spreading up to Bond numbers of 
the order of several hundreds. For droplets (of thickness smaller than 0.001 cm at the center), the values of 
ln(h+/h~m) can be noticeably smaller than 10, and, hence, the model of a flow determined by the dynamic 
edge angle holds for smaller values of B. 

Just as near water, for the case p and a, the condition B >> 100 is equivalent to 2r0 >> 6 cm. The 
diameter of the foundation of a drop should be tens of centimeters for the flow in it to be described by the 
self-similar solution (3.2). 
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If the radius of the drop foundation is approximately 1 cm in the experiment, solution (3.2) is not 
applicable to its description. In [10], the self-similar solution (3.2) was used for interpreting experiments with 
relatively small drops (r0 < 1 cm). It follows that all the experiments considered in [10] are concerned with 
the case where the model of a quasistatic (in the central region) drop with a dynamic edge angle is valid [1, 
2]. 

The flow in a quite large drop consists of a large number of characteristic regions, in which various 
forces show up. The asymptotic description of these regions in a thin drop (film) is possible due to the large 
parameter so (1.4). The value of (h'm) in (3.9) and (3.15) can be determined by van der Waals forces by means 
of (1.3) (the maximum thickness of a precursive film). Here, for h > h~, the capillary forces are important; 
in the region of small thicknesses h << h'm, the film moves under the action of van der Waals forces, and the 
flow can be significantly nonstationary (the appropriate mathematical model is given in [11]). 

Conclus ions .  (1) The solution of the problem of drop spreading has been found in the second 
approximation relative to a small capillary number Ca for arbitrary Bond numbers. The solution describes 
a spreading regime which is determined by the dynamic edge angle when the viscous flow plays a basic role 
near the drop edge. The solution is valid for B < 300 (up to drop diameters of the order of 10 cm). 

(2) The flow structure is determined on large times, when the solution is close to a self-similar solution. 
The capillary forces strongly affect the flow and shape of a macroscopic drop up to Bond numbers of the order 
of 103 or greater. Capillary truncation of the self-similar profile of the drop at its edge occurs. It is important 
that the estimates of the radii of th e drop (tens of centimeters) at which the solution on large times becomes 
closer to a self-similar solution agree well with the estimates of the radii at which the quasiequilibrium model 
of a drop with a dynamic edge angle works. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01605). 
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